To ensure that tap water is safe to drink, the US.EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses:

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the US.EPA's Safe Drinking Water Hotline at (800) 426-4791.

MCAS NEW RIVER WATER SYSTEM RIFLE RANGE WATER SYSTEM ONSLOW BEACH WATER SYSTEM

2014 Annual Water Quality Report

Holcomb Boulevard Water Treatment System

PWSID# 04-67-043

Marine Corps Installation East - Marine Corps Base Camp Lejeune "Home of Expeditionary Forces in Readiness."

Water Conservation

You can play a role in conserving water by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. (Indoor savings are based on a family of two adults and one child. Here are a few tips):

- Run only full loads in dishwasher and washing machine. Saves 300-800 gallons per month
- ➤ Turn off the tap when brushing your teeth. Saves three gallons each day
- Check every faucet in your home for leaks. Just a slow drip can waste 15-20 gallons a day
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak
- Don't use your toilet as an ashtray or wastebasket. Saves 400-600 gallons per month
- Don't run the hose while washing your car. Use a bucket of water and a quick hose rinse at the end. Saves 150 gallons each time
- Adjust your sprinklers so that water lands on your lawn or garden where it belongs and only there. Saves 150 gallons per month
- Water your lawn during the cool parts of the day. Saves 300 gallons

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Robert Lowder (EMD) at (910) 451-5068.

Supplementary Constituents Sampling

In addition to what is required by regulation, and as part of our commitment to ensure that we are providing the safest, most reliable drinking water possible to our Base population, MCIEAST - MCB CAMLEJ has monitored drinking water for compounds found in explosives (nitroaromatics, nitramines, nitrate esters) and perchlorate in finished water since 2004, and raw groundwater starting in 2011. These compounds, commonly known as "munitions constituents", are used in the manufacture of explosives or are the breakdown products of compounds used in explosives. Semiannual raw groundwater sampling in 2014 detected traces of one munitions constituent in wells supplying the Holcomb Boulevard Water Treatment System and one munitions constituent in the finished water. There are no maximum contaminant levels (MCLs) established for munitions constituents.

Additionally, MCIEAST - MCB CAMLEJ sampled raw groundwater semiannually and finished water monthly for listed Volatile Organic Contaminants (VOCs), and Synthetic Organic Contaminants (SOCs) including herbicides. Raw groundwater was also tested for metals beginning in the fall of 2012. This sampling was done voluntarily above what is required by current regulations. Detections of these constituents were below the MCLs at the Holcomb Boulevard Water Treatment System in 2014.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MCIEAST - MCB CAMLEJ - Holcomb Boulevard is responsible for providing high quality drinking water, however, any older, commonly used plumbing materials and components can contribute to lead. When your water has settled for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may choose to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the USEPA's Safe Drinking Water Hotline or at their website http://water.epa.gov/drink/info/lead/index.cfm.

Meeting the Challenge

Marine Corps Installations East - Marine Corps Base Camp Lejeune (MCIEAST - MCB CAMLEJ) is committed to providing you with drinking water that is safe and reliable. We believe that providing you with accurate information about your water is the best way to assure you that your water is safe. This 2014 Water Quality Report for the Holcomb Boulevard Water Treatment System is a snapshot of last year's water quality. Included are details about where your water comes from and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

In 2014, the Holcomb Boulevard Water Treatment System met all U.S. Environmental Protection Agency (EPA) and State drinking water health standards. From the beginning of the year through May 5, 2014, the Hadnot Point Water Treatment Plant provided water to the Holcomb Boulevard water distribution system since the Holcomb Boulevard Water Treatment Plant was temporarily closed for maintenance. For more information about water supplied by the Hadnot Point Water Treatment Plant, see the 2014 Hadnot Point Annual Water Quality Report.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

In accordance with federal and State laws, we routinely monitor for more than 150 contaminants that could potentially be in your drinking water. The presence of contaminants does not necessarily indicate that water poses a heath risk. Unless otherwise noted, the data presented in these tables are from testing done January 1 through December 31, 2014. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. In order to ensure the safety of your drinking water, although it is not required, MCIEAST - MCB CAMLEJ sampled raw groundwater semiannually and finished water monthly for Volatile Organic Contaminants (VOCs), Synthetic Organic Contaminants (SOCs) including herbicides, and munitions constituents. Raw groundwater was also tested for metals beginning in the fall of 2012 and all detections from 2014 sampling are listed on the EMD website address located under Definitions. In addition, the same EMD website (Lead Water Testing in Priority Areas tab) contains sampling results from the special Navy/MCICOM program "Sampling for Lead in Drinking Water in Priority Areas". This program focused on sampling for lead from faucets and fixtures supplying drinking water. The tables below, Detected Regulated Contaminants and Detected Contaminants – Voluntary Monitoring, list all of the drinking water contaminants other than those specifically mentioned above on the EMD website.

DETECTED REGULAT	TED CONT						
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Fluoride (ppm)	2013*	4	4	0.6	NA	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Haloacetic Acids ¹ [HAA] (ppb)	2014	60	NA	22.8	15-36	No	By-product of drinking water disinfection
Total Trihalomethanes ¹ [TTHMs] (ppb)	2014	80	NA	44.6	28-65	No	By-product of drinking water disinfection
Total Coliform Bacteria (No. of positive samples)	2014	One positive sample per month	0	0	NA	No	Naturally present in the environment; used as an indicator that other, potentially harmful bacteria may be present

Tap Water Samples were coll-	ected from 30	0 sample sit	tes through	out the community	for Copper an	d Lead. Re	esults are shown in the table below.
Substance (Unit of Measure)	Year Sampled	Action Level	MCLG	Amount Detected 90th Percentile	Sites Above Action Level	Violation	Typical Source
Copper (ppm)	2013*	1.3	1.3	Less than 0.05 (detection limit)	0	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2013*	15	0	6	0	No	Corrosion of household plumbing systems; erosion of natural deposits

DETECTED CONTAMIN											
Voluntary Sampling Results	oluntary Sampling Results (Detections) for Raw Groundwater Drinking Water Supply Wells (Pre-Treatment)										
Substance	Year	MCL	MCLG	Amount	Range						
(Unit of Measure = ppb)	Sampled	[MRDL]	[MRDLG]	Detected ²	Low-High ²	Violation	Typical Source				
Chloroform	2014	NE	NE	Range of values for three samples	0.50-0.54	No	Discharge from industrial activities				
Chloromethane	2014	NE	NE	0.40 (J)	Only value	No	Burning of forested areas, wood and coal				
2,4-D	2014	70∆	70∆	Range of values for five samples	0.083 - 0.13 (J) and (J, p)	No	Runoff from herbicide used on row crops				
Metribuzin	2014	NE	NE	0.28	Only value	No	Herbicide used as foliar spray or soil treatment				
Pentachlorophenol	2014	1 [∆]	0^{Δ}	0.35	Only value	No	Discharge from wood preserving factories				
Perchlorate	2014	NE	NE	Range of values for nine samples	0.015 - 0.31 (J) and (J, B)	No	Munitions constituent				
Voluntary Sampling Results	(Detections)	for Finished	Drinking V	Water (Post Treatn	nent)						
Haloacetic Acids [HAA]	2014	60	NA	Range of values	12-21	No	By-product of drinking water disinfection				
Total Trihalomethanes [TTHMs]	2014	80	NA	reported	16-37	No	By-product of drinking water disinfection				
Perchlorate	2014	NE	NE	Range of values for two samples	0.31-0.51	No	Partially due to aged sodium hypochlorite used for water treatment; munitions constituent				

¹ This is a running average.

Footnotes:

- J = estimated value B= analyte is found in associated blank p = lower value reported when sample exceeded a lab QC confirmatory check
- * Year that a compliance sample was last required
- △ Finished water EPA standard

Definitions

Amount Detected (90th percentile): Indicates that at least 90% of all of the samples tested were equal to, or below, the amount detected.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EMD Website:

http://www.lejeune.marines.mil/OfficesStaff/ EnvironmentalMgmt/AnnualReports.aspx

MCICOM: Marine Corps Installations Command

MCIEAST - MCB CAMLEJ: Marine Corps Installations East – Marine Corps Base Camp Lejeune.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water

below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NE (Not Established): No standard is established for this contaminant based on the type of sampling performed.

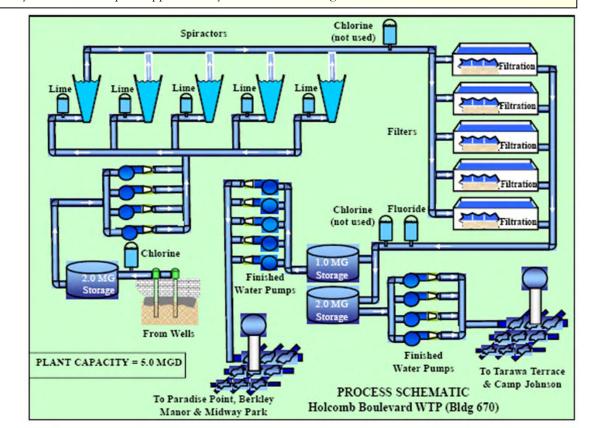
ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

Priority Areas: Primary/secondary schools, Child Development Centers (CDCs), School Age Centers, and Youth/Teen Centers.

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (NCDENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate or Lower. The relative susceptibility rating of each source for Holcomb Boulevard Water Treatment System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings based on the SWAP report completed on June 30, 2014, are summarized in the table below:


Holcomb Boulevard Drinking Water Supply Wells							
Source Name	Susceptibility Rating						
557	Lower						
558	Lower						
584	Lower						
617	Lower						
618	Lower						
619	Lower						
646	Moderate						
647	Moderate						
648	Moderate						
650	Higher						
698	Higher						
699	Higher						
701	Moderate						
703	Higher						
704	Higher						
705	Higher						
708	Lower						
LCH 4009	Higher						

The complete SWAP report for Holcomb Boulevard Water Treatment System may be viewed on the web at http://swap.ncwater.org/website/swap/PublicGetReport.asp. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this report was prepared. To obtain a printed copy of this report, please mail a written request to the Source Water Assessment Program Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email the request to swap@ncdenr.gov. Please indicate your system name, PWSID, and provide your name, mailing address and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

When You Turn on Your Tap, Consider the Source

The Holcomb Boulevard community water system obtains water from 18 groundwater wells located on Base. Groundwater is pumped from the Castle Hayne freshwater aquifer approximately 180 feet below the ground.

Water Treatment Process

As the water enters the water treatment plant, sodium hypochlorite is added to protect against microbial contamination, and the water is placed into a storage reservoir. From the storage reservoir the water is moved to a set of large, cone-shaped devices called spiractors. The spiractors are used to soften the water by removing minerals. Lime is added at the bottom of the spiractors to aid the softening process. The water is then passed through a set of filters, which contain layers of sand and carbon, to remove particles through a process called filtration. Fluoride (to prevent tooth decay) is added to the water, and then the clean water is placed in a large storage tank called a reservoir. When water is needed by customers, it is pumped from the reservoirs and distributed throughout the Holcomb Boulevard community water system.

To ensure that tap water is safe to drink, the USEPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

MCIEAST-MCB CAMLEJ MCAS NEW RIVER WATER SYSTEM RIFLE RANGE WATER SYSTEM ONSLOW BEACH WATER SYSTEM

2014 Annual Water Quality Report

Hadnot Point Water Treatment System

PWSID# 04-67-041

Marine Corps Installation East - Marine Corps Base Camp Lejeune "Home of Expeditionary Forces in Readiness."

Water Conservation

You can play a role in conserving water by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. (Indoor savings are based on a family of two adults and one child. Here are a few tips):

- Run only full loads in dishwasher and washing machine. Saves 300-800 gallons per month
- Turn off the tap when brushing your teeth. Saves three gallons each day
- Check every faucet in your home for leaks. Just a slow drip can waste 15-20 gallons a day
- ➤ Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak
- ➤ Don't use your toilet as an ashtray or wastebasket. Saves 400-600 gallons per month
- Don't run the hose while washing your car. Use a bucket of water and a quick hose rinse at the end. Saves 150 gallons each time
- Adjust your sprinklers so that water lands on your lawn or garden where it belongs and only there. Saves 150 gallons per month
- ➤ Water your lawn during the cool parts of the day. Saves 300 gallons

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Robert Lowder (EMD) at (910) 451-5068.

Supplementary Constituents Sampling

In addition to what is required by regulation, and as part of our commitment to ensure that we are providing the safest, most reliable drinking water possible to our Base population, MCIEAST - MCB CAMLEJ has monitored drinking water for compounds found in explosives (nitroaromatics, nitramines, nitrate esters) and perchlorate, in finished water since 2004, and raw groundwater starting in 2011. These compounds, commonly known as "munitions constituents", are used in the manufacture of explosives or are the breakdown products of compounds used in explosives. Semiannual raw groundwater sampling in 2014 detected traces of two munitions constituents in wells supplying the Hadnot Point Water Treatment System and one munitions constituent in the finished water. There are no maximum contaminant levels (MCLs) established for munitions constituents.

Additionally, MCIEAST - MCB CAMLEJ sampled raw groundwater semiannually and finished water monthly for listed Volatile Organic Contaminants (VOCs), and Synthetic Organic Contaminants (SOCs) including herbicides. Raw groundwater was also tested for metals beginning in the fall of 2012. This sampling was done voluntarily above what is required by current regulations. Detections of these constituents were below the MCLs at the Hadnot Point Water Treatment System in 2014.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MCIEAST - MCB CAMLEJ - Hadnot Point is responsible for providing high quality drinking water, however, any older, commonly used plumbing materials and components can contribute to lead. When your water has settled for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may choose to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the USEPA's Safe Drinking Water Hotline or at their website:

http://water.epa.gov/drink/info/lead/index.cfm.

Meeting the Challenge

Marine Corps Installations East - Marine Corps Base Camp Lejeune (MCIEAST - MCB CAMLEJ) is committed to providing you with drinking water that is safe and reliable. We believe that providing you with accurate information about your water is the best way to assure you that your water is safe. This 2014 Water Quality Report for the Hadnot Point Water Treatment System is a snapshot of last year's water quality. Included are details about where your water comes from and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies.

In 2014, the Hadnot Point Water Treatment System met all U.S. Environmental Protection Agency (EPA) and State drinking water health standards. From December 20, 2014 through the end of the year, the Hadnot Point Water Treatment Plant was temporarily closed for maintenance. During this time, the Holcomb Boulevard Water Treatment Plant supplied water to the Hadnot Point water distribution system. For more information about water supplied by the Holcomb Boulevard Water Treatment Plant, see the 2014 Holcomb Boulevard Water Quality Report.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

In accordance with federal and State laws, we routinely monitor for more than 150 contaminants that could potentially be in your drinking water. The presence of contaminants does not necessarily indicate that water poses a heath risk. Unless otherwise noted, the data presented in these tables are from testing done January 1 through December 31, 2014. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. In order to ensure the safety of your drinking water, although it is not required, MCIEAST - MCB CAMLEJ sampled raw water semiannually and finished water monthly for Volatile Organic Contaminants (VOCs), Synthetic Organic Contaminants (SOCs) including herbicides, and munitions constituents. Raw groundwater was also tested for metals beginning in the fall of 2012 and all detections from 2014 sampling are listed on the EMD website address located under Definitions. In addition, the same EMD website (Lead Water Testing in Priority Areas tab) contains sampling results from the special Navy/MCICOM program "Sampling for Lead in Drinking Water in Priority Areas". This program focused on sampling for lead from faucets and fixtures supplying drinking water. The EMD Website also contains detections from MCIEAST - MCB CAMLEJ's participation in an EPA national program for the UCMR 3 (see Definitions). The tables below, Detected Regulated Contaminants and Detected Contaminants – Voluntary Monitoring, list all of the drinking water contaminants detected other than those specifically mentioned above on the EMD website.

DETECTED REGULATI	ED CONTA	MINANTS					
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Fluoride (ppm)	2012*	4	4	0.6	NA	No	Erosion of natural deposits; Water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Haloacetic Acids ¹ [HAA] (ppb)	2014	60	NA	22.8	12-39	No	By-product of drinking water disinfection
Total Trihalomethanes ¹ TTHMs] (ppb)	2014	80	NA	48.1	21-69	No	By-product of drinking water disinfection
Total Coliform Bacteria (No. of positive samples allowed based on sampling size)	2014	2 positive samples per month	0	2**	NA	No	Naturally present in the environment; used a an indicator that other, potentially harmful bacteria may be present
Tap Water Samples were coll	ected from 30	sample sites	throughout	the community for	or Copper and	Lead. Resu	Its are shown in the table below.
Substance (Unit of Measure)	Year Sampled	Action Level	MCLG	Amount Detected 90th Percentile	Sites Above Action Level	Violation	Typical Source
Copper (ppm)	2014	1.3	1.3	Less than 0.05 (detection limit)	0	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2014	15	0	Less than 3 (detection limit)	0	No	Corrosion of household plumbing systems; erosion of natural deposits
DETECTED CONTAMIN	IANTS - Vo	luntary Mo	onitoring				
Voluntary Sampling Results	(Detections) f	or Raw Grou	ndwater Dr	inking Water Sup	ply Wells (Pre	-Treatment)
Substance	Year	MCL	MCLG	Amount	Range		
(Unit of Measure = ppb)	Sampled				italige		
		[MRDL]	[MRDLG]	Detected ²	Low-High ²	Violation	Typical Source
• •	2014	70∆	70∆	Detected ² 0.42 (J)	Low-High ² Only value	No	Discharge from textile finishing factories
				Detected ² 0.42 (J) 0.32 (J)	Low-High ² Only value Only value		· ·
Chloromethane	2014	70∆	70∆	Detected ² 0.42 (J)	Low-High ² Only value	No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics
Chloromethane Di(2-ethylhexyl)phthalate	2014 2014	70 [∆] NE	70 [∆] NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p)	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value	No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D	2014 2014 2014 2014 2014	70^{Δ} NE 6^{Δ} NE 70^{Δ}	70 ^Δ NE 0 ^Δ NE 70 ^Δ	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples	Low-High ² Only value Only value 0.62 - 1.5 All (J)	No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol	2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ	70 ^Δ NE 0 ^Δ NE 70 ^Δ 0 ^Δ	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value	No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol	2014 2014 2014 2014 2014	70^{Δ} NE 6^{Δ} NE 70^{Δ}	70 ^Δ NE 0 ^Δ NE 70 ^Δ	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p)	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value	No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE 70 ^Δ NE NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value 0.02 - 0.14 (J) and (J, B)	No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results	2014 2014 2014 2014 2014 2014 2014 2014	70 ^A NE 6 ^A NE 70 ^A 1 ^A NE NE NE Or Finished I	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE 70 ^Δ NE NE NE NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples ter (Post Treatments)	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value Only value 0.02 - 0.14 (J) and (J, B)	No No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE 70 ^Δ NE NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value 0.02 - 0.14 (J) and (J, B)	No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent Runoff from herbicide used on right of ways
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results Dalapon Perchlorate	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE NE 0r Finished I 200 NE	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE NE 70 ^Δ NE NE NE NE Drinking Wa 200 NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples ter (Post Treatments)	Cow-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value 0.02 - 0.14 (J) and (J, B) ent) Only value Only value	No No No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent Runoff from herbicide used on right of ways Partially due to aged sodium hypochlorite used f water treatment; munitions constituent
1,2,4-Trichlorobenzene Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results Dalapon Perchlorate Haloacetic Acids [HAA]	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE NE 0r Finished I	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE NE 70 ^Δ NE NE NE Orinking Wa	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples ter (Post Treatments)	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value 0.02 - 0.14 (J) and (J, B) ent) Only value	No No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent Runoff from herbicide used on right of ways Partially due to aged sodium hypochlorite used for
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results Dalapon Perchlorate	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE NE 0r Finished I 200 NE	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE NE 70 ^Δ NE NE NE NE Drinking Wa 200 NE	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples ter (Post Treatments 1.1	Cow-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value 0.02 - 0.14 (J) and (J, B) ent) Only value Only value	No No No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent Runoff from herbicide used on right of ways Partially due to aged sodium hypochlorite used for water treatment; munitions constituent
Chloromethane Di(2-ethylhexyl)phthalate Dicamba 2,4-D Pentachlorophenol 2-Nitrotoluene Perchlorate Voluntary Sampling Results Dalapon Perchlorate Haloacetic Acids [HAA] Total Trihalomethanes	2014 2014 2014 2014 2014 2014 2014 2014	70 ^Δ NE 6 ^Δ NE 70 ^Δ 1 ^Δ NE NE NE NE NE Or Finished I 200 NE 60	70 ^Δ NE 0 ^Δ NE 70 ^Δ NE NE Drinking Wa 200 NE NA	Detected ² 0.42 (J) 0.32 (J) Range of values for five samples 0.09 (J,p) Range of values for three samples 0.62 0.25 (J,p) Range of values for five samples ter (Post Treatment of the samples) 0.07 (J) Range of Values	Low-High ² Only value Only value 0.62 - 1.5 All (J) Only value 0.10 - 0.18 (J) and (J, p) Only value Only value 0.02 - 0.14 (J) and (J, B) ent) Only value Only value 12-23	No No No No No No No No	Discharge from textile finishing factories Burning of forested areas, wood and coal Plasticizer used in plastics Herbicide used to control broadleaf weeds a woody plants Runoff from herbicide used on row crops Discharge from wood preserving factories Munitions constituent Munitions constituent Runoff from herbicide used on right of ways Partially due to aged sodium hypochlorite used f water treatment; munitions constituent By-product of drinking water disinfection

Footnotes:

This is a running average.

- J = estimated value B= analyte is found in associated blank p = lower value reported when sample exceeded a lab QC confirmatory check
- Year that a compliance sample was last required
- **Two positive samples detected for the year; one detection in July and one detection in October.

△ Finished water EPA standard

Definitions

Amount Detected (90th percentile): Indicates that at least 90% of all of the samples tested were equal to, or below, the amount detected.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EMD Website:

http://www.lejeune.marines.mil/OfficesStaff/
EnvironmentalMgmt/AnnualReports.aspx

MCICOM: Marine Corps Installations Command

MCIEAST - MCB CAMLEJ: Marine Corps Installations East - Marine Corps Base Camp Lejeune

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NE (Not Established): No standard is established for this contaminant based on the type of sampling performed.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

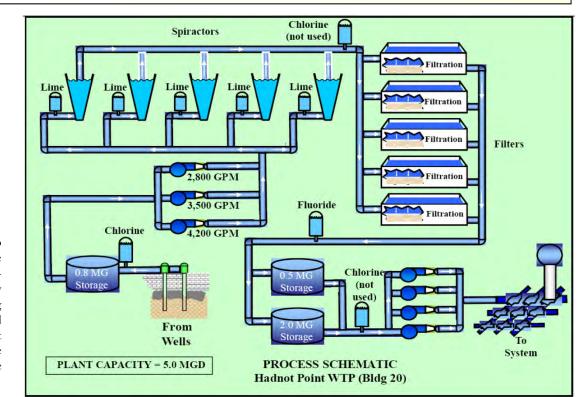
Priority Areas: Primary/secondary schools, Child Development Centers (CDCs), School Age Centers, and Youth/Teen Centers.

UCMR 3 (Unregulated Contaminant Monitoring Rule 3): EPA national program for determination of future drinking water regulatory decisions. Further facts on UCMR 3 is at::

http://water.epa.gov/lawsregs/rulesregs/sdwa/ucmr/ucmr3/basicinformation.cfm

Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (NCDENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate or Lower. The relative susceptibility rating of each source for Hadnot Point Water Treatment System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings based on the SWAP report completed on June 30, 2014, are summarized in the table below:


Hadnot Point							
Drinking Water Supply Wells							
Source Name	Susceptibility Rating						
585	Moderate						
595	Lower						
596	Lower						
606	Moderate						
607	Moderate						
611	Lower						
612	Lower						
614	Lower						
621	Moderate						
622	Moderate						
627	Moderate						
632	Lower						
640	Moderate						
641	Higher						
652	Lower						
661	Moderate						
662	Lower						
663	Moderate						
684	Not Rated						
685	Not Rated						
686	Not Rated						
688	Not Rated						
709	Higher						
710	Moderate						
711	Moderate						
5186	Moderate						

The complete SWAP report for the Hadnot Point Water Treatment System may be viewed on the web at http://swap.ncwater.org/website/swap/PublicGetReport.asp. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this Web site may differ from the results that were available at the time this report was prepared. To obtain a printed copy of this report, please mail a written request to Source Water Assessment Program Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email the request to swap@ncdenr.gov. Please indicate your system name, PWSID, and provide your name, mailing address and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

When You Turn on Your Tap, Consider the Source

The Hadnot Point community water system obtains water from 26 groundwater wells located on the Base. Groundwater is pumped from the Castle Hayne aquifer approximately 180 feet below the ground.

Water Treatment Process

As the raw water enters the water treatment plant, sodium hypochlorite is added to protect against microbial contamination, and the water is placed into a storage reservoir. From the storage reservoir the water is pumped to a set of large, cone-shaped devices called spiractors. The spiractors are used to soften the water by removing minerals. Lime is added at the bottom of the spiractors to aid the softening process. The water is then passed through a set of filters, which contain layers of sand and carbon, to remove particles through a process called filtration. Fluoride (to prevent tooth decay) is added to the water, and then the clean water is placed in a large storage tank called a reservoir. When water is needed by customers, it is pumped from the reservoirs and distributed throughout the Hadnot Point community water system.

To ensure that tap water is safe to drink, the USEPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

MCIEAST-MCB CAMILEJ MCAS NEW RIVER WATER SYSTEM HADNOT POINT WATER SYSTEM ONSLOW BEACH WATER SYSTEM

2014 Annual Water Quality Report

MCAS New River Water Treatment System

PWSID# 04-67-042

Water Conservation

You can play a role in conserving water by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. (Indoor savings are based on a family of two adults and one child. Here are a few tips):

- ➤ Run only full loads in dishwasher and washing machine. Saves 300-800 gallons per month
- Turn off the tap when brushing your teeth. Saves three gallons each day
- ➤ Check every faucet in your home for leaks. Just a slow drip can waste 15-20 gallons a day
- ➤ Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak
- ➤ Don't use your toilet as an ashtray or wastebasket. Saves 400-600 gallons per month
- ➤ Don't run the hosepipe while washing your car. Use a bucket of water and a quick hose rinse at the end. Saves 150 gallons each time
- Adjust your sprinklers so that water lands on your lawn or garden where it belongs and only there. Saves 150 gallons per month
- ➤ Water your lawn during the cool parts of the day. Saves 300 gallons

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Robert Lowder (EMD) at (910) 451-5068.

Supplementary Constituents Sampling

In addition to what is required by regulation, and as part of our commitment to ensure that we are providing the safest, most reliable drinking water possible to our Base population, MCIEAST - MCB CAMLEJ has monitored drinking water for compounds found in explosives (nitroaromatics, nitramines, nitrate esters) and perchlorate in finished water since 2004, and raw groundwater starting in 2011. These compounds, commonly known as "munitions constituents", are used in the manufacture of explosives or are the breakdown products of compounds used in explosives. Semiannual raw groundwater sampling in 2014 detected one munitions constituent from wells supplying the MCAS New River Water Treatment System and traces of two munitions constituents in finished water. There are no maximum contaminant levels (MCLs) established for munitions constituents.

Additionally, MCIEAST-MCB CAMLEJ sampled raw groundwater semiannually and finished water monthly for listed Volatile Organic Contaminants (VOCs), and Synthetic Organic Contaminants (SOCs) including herbicides. Raw groundwater was also tested for metals beginning in the fall of 2012. This sampling was done voluntarily above what is required by current regulations. Detections of these constituents were below the MCLs at the MCAS New River Water Treatment System in 2014.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MCIEAST-MCB CAMLEJ and MCAS New River is responsible for providing high quality drinking water, however, any older, commonly used plumbing materials and components can contribute to lead. When your water has settled for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may choose to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the USEPA's Safe Drinking Water Hotline or at their website: http://water.epa.gov/drink/info/lead/index.cfm.

Meeting the Challenge

Marine Corps Installations East - Marine Corps Base Camp Lejeune (MCIEAST - MCB CAMLEJ) is committed to providing you with drinking water that is safe and reliable. We believe that providing you with accurate information about your water is the best way to assure you that your water is safe. This 2014 Water Quality Report for the MCAS New River Water Treatment System is a snapshot of last year's water quality. Included are details about where your water comes from and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies. In 2014 the MCAS New River Water Treatment System met all U.S. Environmental Protection Agency (EPA) and State drinking water health standards.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

In accordance with federal and State laws, we routinely monitor for more than 150 contaminants that could potentially be in your drinking water. The presence of contaminants does not necessarily indicate that water poses a heath risk. Unless otherwise noted, the data presented in these tables are from testing done January 1 through December 31, 2014. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. In order to ensure the safety of your drinking water, although it is not required, MCIEAST - MCB CAMLEJ sampled raw groundwater semiannually and finished water monthly for Volatile Organic Contaminants (VOCs), Synthetic Organic Contaminants (SOCs) including herbicides, and munitions constituents. Raw groundwater was also tested for metals beginning in the fall of 2012 and all detections from 2014 sampling are listed on the EMD website address located under Definitions. In addition, the same EMD website (Lead Water Testing in Priority Areas tab) contains sampling results from the special Navy/MCICOM program "Sampling for Lead in Drinking Water in Priority Areas". This program focused on sampling for lead from faucets and fixtures supplying drinking water. The tables below, Detected Regulated Contaminants and Detected Contaminants – Voluntary Monitoring, list all of the drinking water contaminants detected other than those specifically mentioned above on the EMD website.

Substance	Year	MCL	MCLG	Amount	Range		
(Unit of Measure)	Sampled	[MRDL]	[MRDLG]	Detected	Low-High	Violation	Typical Source
Fluoride (ppm)	2012*	4	4	0.1	NA	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Haloacetic Acids ¹ [HAA] (ppb)	2014	60	NA	18.1	9-27	No	By-product of drinking water disinfection
Total Trihalomethanes ¹ [TTHMs] (ppb)	2014	80	NA	56	28-74	No	By-product of drinking water disinfection
Total Coliform Bacteria (No. of positive samples)	2014	One positive sample per month	0	1	NA	No	Naturally present in the environment; used as an indicator that other, potentially harmful bacteria may be present

Substance (Unit of Measure)	Year Sampled	Action Level	MCLG	Detected 90th Percentile	Action Level	Violation	Typical Source
Copper (ppm)	2013*	1.3	1.3	0.127	0	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2013*	15	0	11	2	No	Corrosion of household plumbing systems; erosion of natural deposits

DETECTED CONTAMINANTS - Voluntar	y Monitoring
---	--------------

Voluntary Sampling Results (oluntary Sampling Results (Detections) for Raw Groundwater Drinking Water Supply Wells (Pre-Treatment)										
Substance (Unit of Measure = ppb)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected ²	Range Low-High ²	Violation	Typical Source				
Perchlorate	2014	NE	NE	0.030 (J,B)	Only Value	No	Munitions constituent				
Voluntary Sampling Results (oluntary Sampling Results (Detections) for Finished Drinking Water (Post Treatment)										
2-Amino-4,6-dinitrotoluene	2014	NE	NE	0.088 (J,B,p)	Only value	No	Munitions constituent				
Perchlorate	2014	NE	NE	Range of Values for two samples	0.18 (J,B)-0.51**	No	Partially due to aged sodium hypochlorite used for water treatment; munitions constituent				
Tetrachloroethylene	2014	5	0	0.794	Only value	No	Discharge from factories and dry cleaners				
Haloacetic Acids [HAA]	2014	60	NA	Dange of Values	11-24	No	By-product of drinking water disinfection				
Total Trihalomethanes [TTHMs]	2014	80	NA	Range of Values is Reported	31-38	No	By-product of drinking water disinfection				

Footnotes:

- J = estimated value B = analyte found in assosciated blank p = lower value reported when sample exceeded a lab QC confirmatory check
- Year that a compliance sample was last required
- Lab QC sample result indicated matrix interference. Lab reanalyzed sample with improved QC and sample indicated "none detected" for parameter.

Definitions

Amount Detected (90th percentile): Indicates that at least 90% of all of the samples tested were equal to, or below, the amount detected.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EMD Website:

http://www.lejeune.marines.mil/OfficesStaff/ EnvironmentalMgmt/AnnualReports.aspx

MCICOM: Marine Corps Installations Command

MCIEAST-MCB CAMLEJ: Marine Corps Installations East - Marine Corps Base Camp Lejeune

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

NE (Not Established): No standard is established for this contaminant based on the type of sampling performed.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

Priority Areas: Primary/secondary schools, Child Development Centers (CDCs), School Age Centers, Youth/Teen Centers.

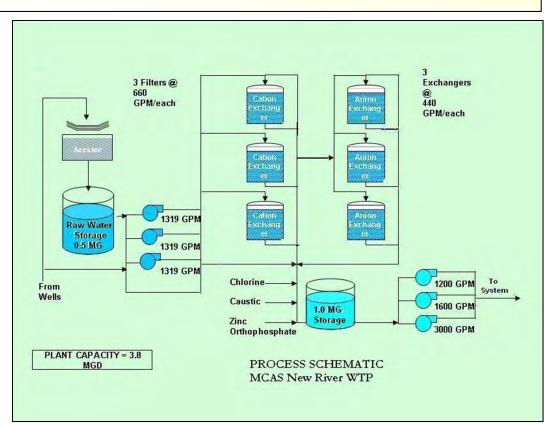
Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (NCDENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate or Lower. The relative susceptibility rating of each source for MCAS New River Water Treatment System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings based on the SWAP report completed on June 30, 2014, are summarized in the table below:

1.1 0.	MCAS New River Drinking Water Supply Wells							
Source Name Susceptibility Rating								
VL 101	Moderate							
VL 102	Moderate							
VL 103	Moderate							
VL 104	Moderate							
VL 105	Moderate							
VL 106	Not Rated							
VL 107	Not Rated							
VL 109	Not Rated							

The complete SWAP report for the MCAS New River Water Treatment System may be viewed on the web at http://swap.ncwater.org/website/swap/PublicGetReport.asp. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this report was prepared. To obtain a printed copy of this report, please mail a written request to Source Water Assessment Program Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email the request to swap@ncdenr.gov. Please indicate your system name, PWSID, and provide your name, mailing address and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.


When You Turn on Your Tap, Consider the Source

The MCAS New River community water system obtains water from eight groundwater wells located in the Verona Loop area. Groundwater is pumped from the Castle Hayne freshwater aquifer approximately 180 feet below the ground.

Water Treatment Process

Since January 2008, a new 3.8 million gallons per day (MGD) ion exchange water treatment plant has been in operation, which replaced an older water treatment plant. This has improved service and drinking water quality.

Groundwater is pumped from the drinking water supply wells to a water reservoir located at the MCAS New River Water Treatment Plant. Water is pumped to the top of the reservoir and cascades down providing aeration. This water is then pumped to a series of cation and anion exchange (softeners) to remove particles. Chlorine, caustic and zinc orthophosphate are added to the water before it enters the finished water reservoir. When water is needed by customers, it is pumped from the reservoir and distributed throughout the MCAS New River community water system.

To ensure that tap water is safe to drink, the USEPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operation, or wildlife;

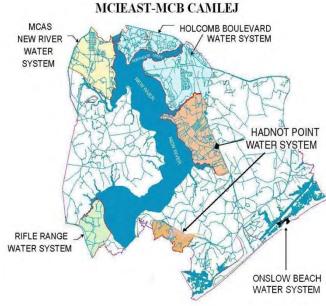
Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban stormwater runoff and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the USEPA's Safe Drinking Water Hotline at (800) 426-4791.


Water Conservation

You can play a role in conserving water by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. (Indoor savings are based on a family of two adults and one child. Here are a few tips):

- Run only full loads in dishwasher and washing machine. Saves 300-800 gallons per month
- Turn off the tap when brushing your teeth. Saves three gallons each day
- Check every faucet in your home for leaks. Just a slow drip can waste 15-20 gallons a day
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak
- Don't use your toilet as an ashtray or wastebasket. Saves 400-600 gallons per month
- Don't run the hose while washing your car. Use a bucket of water and a quick hose rinse at the end. Saves 150 gallons each time
- Adjust your sprinklers so that water lands on your lawn or garden where it belongs – and only there. Saves 150 gallons per month
- Water your lawn during the cool parts of the day. Saves 300 gallons

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Robert Lowder (EMD) at (910) 451-5068.

Supplementary Constituents Sampling

In addition to what is required by regulation, and as part of our commitment to ensure that we are providing the safest, most reliable drinking water possible to our Base population, MCIEAST-MCB CAMLEJ has monitored drinking water for compounds found in explosives (nitroaromatics, nitramines, nitrate esters) perchlorate, in finished water since 2004. These compounds, commonly known as "munitions constituents", are used in the manufacture of explosives or are the breakdown products of compounds used in explosives. Routine monthly sampling in 2014 did not detect any munitions constituents in the Rifle Range Water Distribution System.

Additionally, MCIEAST-MCB CAMLEJ sampled finished water monthly for Volatile Organic Contaminants (VOCs) and Synthetic Organic Contaminants (SOCs) including herbicides. This sampling was done voluntarily above what is required by current regulations. Detections of any constituents were well below the maximum contaminant levels (MCLs) in the Rifle Range Water Distribution System in 2014.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MCIEAST-MCB CAMLEJ -Rifle Range is responsible for providing high quality drinking water, however, any older, commonly used plumbing materials and components can contribute to lead. When your water has settled for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may choose to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the USEPA's Safe Drinking Water Hotlline or at their website http://water.epa.gov/drink/info/lead/index.cfm.

2014 Annual Water **Quality Report**

Rifle Range Water Distribution System

PWSID# 04-67-046

Meeting the Challenge

Marine Corps Installations East - Marine Corps Base Camp Lejeune (MCIEAST - MCB CAMLEJ) is committed to providing you with drinking water that is safe and reliable. We believe that providing you with accurate information about your water is the best way to assure you that your water is safe. This 2014 Water Quality Report for the Rifle Range Water Distribution System is a snapshot of last year's water quality. Included are details about where your water comes from and how it compares to standards set by regulatory agencies. constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water and providing you with this information because informed customers are our best allies. In 2014, the Rifle Range Water Distribution System met all U.S. Environmental Protection Agency (EPA) and State drinking water health standards.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

In accordance with federal and State laws, we routinely monitor for more than 150 contaminants that could potentially be in your drinking water. The presence of contaminants does not necessarily indicate that water poses a heath risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2014. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. In order to ensure the safety of your drinking water, although it is not required, MCIEAST - MCB CAMLEJ sampled finished water each month for Volatile Organic Contaminants (VOCs), Synthetic Organic Contaminants (SOCs) including herbicides, and munitions constituents. The tables below, Detected Regulated Contaminants and Detected Contaminants – Voluntary Monitoring, list all of the drinking water contaminants detected for this reporting period.

Substance	Year	MCL	MCLG	Amount	Range		
(Unit of Measure)	Sampled	[MRDL]	[MRDLG]	Detected	Low-High	Violation	Typical Source
Fluoride (ppm)	2013*	4	4	0.6	Only value	No	Erosion of natural deposits; water additive to minimize tooth decay; discharge from fertilizer and aluminum factories
Haloacetic Acids ¹ HAA] (ppb) - Stage 1 DBP	2014	60	NA	See range of values	20-21	No	By-product of drinking water disinfection
otal Trihalomethanes ¹ FTHMs] (ppb) - Stage 1 DBP	2014	80	NA	See range of values	46-49	No	By-product of drinking water disinfection
aloacetic Acids ² HAA] (ppb) - Stage 2 DBP	2014	60	NA	43.8	32-53	No	By-product of drinking water disinfection
otal Trihalomethanes ² FTHMs] (ppb) - Stage 2 DBP	2014	80	NA	45.5	27-57	No	By-product of drinking water disinfection

Tap Water Samples were collected from 10 sample sites throughout the community for Copper and Lead. Results are shown in the table below.								
Substance (Unit of Measure)	Year Sampled	Action Level	MCLG	Amount Detected 90th Percentile	Sites Above Action Level	Violation	Typical Source	
Copper (ppm)	2013*	1.3	1.3	0.29	0	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead (ppb)	2013*	15	0	Less than 3 (detection limit)	0	No	Corrosion of household plumbing systems; erosion of natural deposits	

DETECTED CONTAMINANTS - Voluntary Monitoring /oluntary Sampling Results (Detections) for Finished Drinking Water (Post Treatment)								
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source	
Haloacetic Acids ¹ HAA] (ppb) - Stage 1 DBP	2014	60	NA	12.6	Only value	No	By-product of drinking water disinfection	
Total Trihalomethanes ¹ TTHMs] (ppb) - Stage 1 DBP	2014	80	NA	27.4	Only value	No	By-product of drinking water disinfection	
Haloacetic Acids ² HAA] (ppb) - Stage 2 DBP	2014	60	NA	17.8	17-20	No	By-product of drinking water disinfection	
Total Trihalomethanes ²	2014	80	NA	20.9	18-26	No	By-product of drinking water disinfection	

- Range / values for first quarter sampling results only per Stage 1 Disinfection Byproducts Rule (DBP).
- ² This is a running average for the 2nd-4th quarters sampling results per Stage 2 DBP Rule which started in the second quarter for this water system.
- * Year that a compliance sample was last required

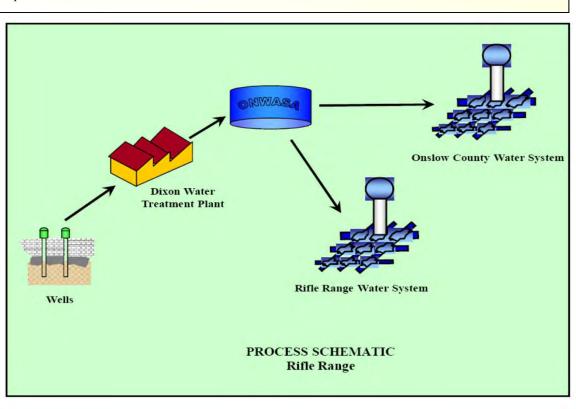
Source Water Assessment Program (SWAP) Results

The North Carolina Department of Environment and Natural Resources (NCDENR), Public Water Supply (PWS) Section, Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (well or surface water intake) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP reports that include maps, background information, and a relative susceptibility rating of each source for the Rifle Range Water Distribution System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and the inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings based on the ONWASA SWAP report completed on June 25, 2014 are summarized in the table below:

ONWASA (Rifle Range) Drinking Water Supply Wells					
Source Name	Susceptibility Rating				
Dixon Well 1	Lower				
Dixon Well 2	Lower				
Dixon Well 3	Lower				
Dixon Well 5	Lower				
Dixon Well 6	Lower				
Dixon Well 7	Lower				
Dixon Well 8	Moderate				
Dixon Well 9	Moderate				

The complete SWAP report for the Rifle Range Water Distribution System may be viewed on the web at http://swap.ncwater.org/website/swap/PublicGetReport.asp. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that were available at the time this report was prepared. To obtain a printed copy of this report, please mail a written request to Source Water Assessment Program Report Request, 1634 Mail Service Center, Raleigh, NC 27699-1634, or email the request to swap@ncdenr.gov. Please indicate your system name, PWSID, and provide your name, mailing address, and phone number. If you have any questions about the SWAP report please contact the Source Water Assessment staff by phone at (919) 707-9098.

It is important to understand that a susceptibility rating of "higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.


When You Turn on Your Tap, Consider the Source

The MCIEAST - MCB CAMLEJ Rifle Range system is supplied with drinking water from the Onslow Water and Sewer Authority (ONWASA). This system consists of a series of groundwater wells that are used to pump raw water from the Castle Hayne groundwater aquifer, of which several of these wells source the ONWASA Dixon Water Treatment Plant.

Water Distribution Process

Water from the Rifle Range is purchased from the Onslow Water and Sewer Authority (ONWASA). ONWASA has installed Granular Activated Carbon (GAC) filters that will assist in reducing TTHM levels. The Rifle Range Water Distribution System met all U.S. Environmental Protection Agency (EPA) and State drinking water health standards in 2014.

The 2014 ONWASA Water Quality Report can be accessed at http://www.onwasa.com.

Definitions

Amount Detected (90th percentile): Indicates that at least 90% of all of the samples tested were equal to, or below, the amount detected.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCIEAST-MCB CAMLEJ: Marine Corps Installations East – Marine Corps Base Camp Lejeune

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not Applicable

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).