System: Hadnot Point

Start Date: 01 Jan 2021
End Date: 30 June 202

PWSID: 04-67-041 1 Unit of Range MCL^1 Contaminants Average Note Measure Low High Finished Drinking Water Detections **Explosive Constituents** Perchlorate 0.0806 J 0.0784 0.0828 N/A ug/L **Inorganic Constituents** Arsenic Only Detection 0.382 ug/L J 10 ug/L 4.79 4.72 4.86 2000 ug/L Barium ug/L Calcium 29,100 29,100 N/A 29,100 ug/L Chlorate 307 304 310 N/A ug/L Hexavalent Chromium 0.141 ug/L 0.132 0.149 N/A 1,860 Magnesium 1,855 ug/L 1.850 N/A 1,010 N/A Potassium 1,005 ug/L 1,000 Selenium 0.601 J Only Detection 50 ug/L ug/L Sodium 11,000 ug/L 11,000 11,000 N/A N/A 135.5 uq/L 135 136 Strontium Per- and Polyfluoroalkyl Substances NO DETECTIONS **SOCs** Hexachlorocyclopentadiene 0.03 50 ug/L J 0.03 0.03 ug/L **Total Organic Carbon Total Organic Carbon** 1,440 Only Detection N/A ug/L **VOCs** Bromodichloromethane 15.7 15.8 N/A ug/L 15.6 Chloroform 52.2 51.3 53.1 N/A ug/L Dibromochloromethane 3.33 3.28 3.38 N/A ug/L Raw Groundwater Detections **Explosive Constituents** Perchlorate 0.0601 ug/L J 0.0343 0.0837 N/A **Inorganic Contaminants** Barium 11.55 ug/L 2.28 22.5 700 N/A Calcium 72,110 ug/L 42,400 97,400 N/A Chlorate 3.41 2.64 4.32 ug/L J

1.52

0.242

9.19

891

J

J

J

ug/L

ug/L

ug/L

ug/L

1.04

0.135

2.89

24

1.87

0.353

17.2

2,740

10

N/A

1000 ug/L

300

Chromium

Cobalt

Copper

Iron

Start Date: 01 Jan 2021
End Date: 30 June 2021

System: Hadnot Point PWSID: 04-67-041

Contourinante	Average	Unit of	Note	Range		1		
Contaminants		Measure		Low	High	MCL ¹		
Lead	0.194	ug/L		0.065	0.449	15		
Magnesium	1,734	ug/L		1,000	2,940	N/A		
Manganese	20.37	ug/L		6.21	35	50		
Nickel	0.451	ug/L	J	Only Detection 100		100		
Potassium	1,087	ug/L		482	2,550	N/A		
Selenium	1.054	ug/L	J	0.679	2.81	20		
Sodium	6,549	ug/L		4,830	10,400	N/A		
Strontium	200	ug/L	В	123	303	N/A		
Vanadium	0.514	ug/L	J	0.392	0.626	N/A		
Zinc	104.3	ug/L	J	8.77	715	1000 ug/L		
Per- and Polyfluoroalkyl Substances								
Perfluorobutanesulfonic Acid (L-PFBS)	2	ng/L		Only De	etection	N/A		
Perfluoroheptanoic Acid (PFHpA)	1.93	ng/L		Only Detection N/A		N/A		
Perfluorohexanesulfonic Acid (PFHxS)	1.280	ng/L	J	0.759	1.8	N/A		
Perfluorohexanoic Acid (PFHxA)	7.887	ng/L		0.674	15.1	N/A		
Perfluorooctanesulfonic Acid (PFOS)	0.648	ng/L	J	0.501	0.794	N/A		
Perfluorooctanoic Acid (PFOA)	0.755	ng/L	J	Only Detection N/A				
	SOC	s						
	NO DETE	CTIONS						
Total Organic Carbon								
Total Organic Carbon	1,645	ug/L	J	659	5,580	N/A		
VOCs								
Toluene	0.261	ug/L	J	Only Detection N/A				
¹ The contaminants with the Maximum Contaminant Level (MCL) listed as N/A do not currently								
nave a federal drinking water standard or regulation.								

Unit Descriptions					
Term	Definition				
mg/L	Milligrams per liter (mg/L) or parts per million (ppm)				
ug/L	Micrograms per liter (ug/L) or parts per billion (ppb)				
ng/L	Nanograms per liter (ng/L) or parts per billion (ppt)				
1	The "J" qualifier indicates the result is less than the reporting limit but greater than or				
J	equal to the method detection limit, and the concentration is an approximate value.				

SOURCE WATER ASSESSMENT PROGRAM (SWAP) RESULTS

The North Carolina Department of Environmental Quality (NCDEQ), Public Water Supply Section (PWSS), Source Water Assessment Program (SWAP) conducted assessments for all drinking water sources across North Carolina. The purpose of the assessments was to determine the susceptibility of each drinking water source (wells) to Potential Contaminant Sources (PCSs). The results of the assessment are available in SWAP reports that include maps, background information, and a relative susceptibility rating of Higher, Moderate or Lower. The relative susceptibility rating of each source for the Hadnot Point Water Treatment System was determined by combining the contaminant rating (number and location of PCSs within the assessment area) and inherent vulnerability rating (i.e., characteristics or existing conditions of the well or watershed and its delineated assessment area). The assessment findings based on the SWAP report completed on September 10, 2020 are summarized in the table below:

Hadnot Point Drinking Water Supply Wells						
Source Name Susceptibility Rating						
585	Moderate					
595	Lower					
596	Lower					
606	Moderate					
607	Moderate					
611	Lower					
612	Lower					
614	Lower					
621	Moderate					
622	Moderate					
627	Moderate					
630	Lower					
632	Lower					
640	Moderate					
641	Higher					
652	Lower					
661	Moderate					
662	Lower					
663	Lower					
668	Lower					
669	Moderate					
684	Lower					
685	Moderate					
686	Lower					
688	Lower					
709	Moderate					
710	Moderate					
711	Moderate					
5186	Higher					

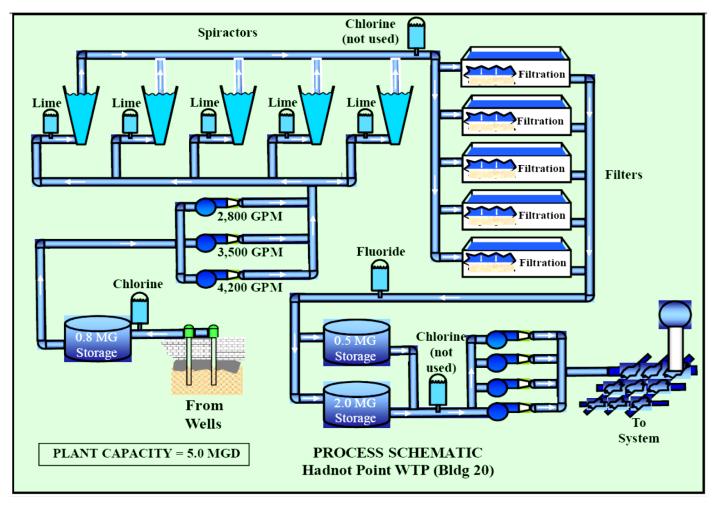
The complete SWAP report for the Hadnot Point Water Treatment System may be viewed on the web at:

http://www.ncwater.org/?page=600

In order to access his report you will need to enter either the system name or PWS ID. Both have been provided below. Please note that because SWAP results and reports are periodically updated by the PWS Section, the results available on this website may differ from the results that are available at the time this report was prepared.

System Name: USMC Lejeune - Hadnot Point

PWS ID: 0467041



It is important to understand that a susceptibility rating of "Higher" does not imply poor water quality, only the system's potential to become contaminated by PCSs in the assessment area.

Hadnot Point Water Treatment Process

As the raw water enters the water treatment plant, sodium hypochlorite is added to protect against microbial contamination, and the water is placed into a storage reservoir. From the storage reservoir the water is pumped to a set of large, cone-shaped devices

called spiractors. The spiractors are used to soften the water by removing minerals. Lime is added at the bottom of the spiractors to aid the softening process. The water is then passed through a set of filters, which contain layers of sand and carbon, to remove particles through a process called filtration. Fluoride (to prevent tooth decay) is added to the water, and then the clean water is placed in a large storage tank called a reservoir. When water is needed by customers, it is pumped from the reservoirs and distributed throughout the Hadnot Point community water system.

WATER CONSERVATION

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? You can play a role in conserving water by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever possible. It is not hard to conserve water. Small changes can make a big difference. Here are a few tips:

- ➤ Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- ➤ Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- ➤ Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- ➤ Check every faucet in your home for leaks. Just a slow drip can waste 15-20 gallons a day.
- ➤ Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak.
- ➤ Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- ➤ Water plants only when necessary and adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- ➤ Don't run the hose while washing your car. Use a bucket of water and a quick hose rinse at the end or wash vehicles at a carwash that recycles its water. Saves 150 gallons each time.

Teach your kids about water conservation to ensure a future generation that uses water wisely. Visit www.epa.gov/watersense for more information.

Remember, when you conserve water you also conserve energy!